
Arnoldi Iteration and Applications

Camille R. Zaug and Christopher Ross

March 15, 2019

1 Introduction and Motivation

The eigenvalues of a matrix or linear operator A give us important information about the system.
They can help us construct an orthogonal basis that spans A (if possible), indicate how transfor-
mation acts on a vector, find approximate representations of A, and more [1]. They are therefore
used in a wide variety of applications, from designing bridges to searching for oil [2]. A well-known
method of finding the eigenvalues of a matrix is the QR decomposition, but this method is most
effective for matrices on the order of 1000×1000 elements large [3]. In most real-world applica-
tions, the systems are much larger, so to find eigenvalues of these larger systems we turn to Arnoldi
iteration.

Arnoldi Iteration is a relatively expedient way to approximate the largest eigenvalues of a square
matrix A. This method can be thought of as a projection of A onto the order-n Krylov subspace
Kn given by

Kn(A,x) = span{x, Ax, A2x, ..., An−1x}

where the vectors forming the basis of this subspace can then be used to find the eigenvalues of
A [4]. In practice, we do not use the vectors {x, Ax, A2x, ..., An−1x}. As n increases, the vectors
begin to approach an eigenvector pointing in the direction of the largest eigenvalue of A, resulting
in many nearly-parallel vectors that form a poor basis for computational purposes. Instead, we
choose a different method, namely the modified Gram-Schmidt method, to construct a basis for
Kn [5].

The Arnoldi method is especially useful for studying the eigenvectors of linear operators, as they
can do so without ever needing the matrix representation of that operator. This saves memory,
since the matrix form is never created, and time, since the elements are not read off of the matrix.

2 The Arnoldi Iteration Algorithm

Given a square matrix A and a guess vector b, the first step of the Arnoldi algorithm is to normalize
b and use it as the first vector in the basis for Kn, so

q0 =
b
||b||2

.

The next n-q vectors are found by the first taking the product

qn = Aqn−1

1

and then projecting out the components of qn in the directions of the other n− 1 q vectors. As a
result, all vectors are orthogonal to one another. Finally, the vectors are normalized, and

qn =
qn

||qn||2
.

The details of this method are given in algorithm 1.

Algorithm 1: Given a matrix A, a guess vector b, and n iterations, The Arnoldi iteration
algorithm returns an orthonormal matrix Qn and a Hessenberg matrix Hn that can be used
to find the eigenvalues of A. Note: qH indicates the Hermitian of q.
Result: Qn, Hn

1 q0 = b
||b||2

2 for j = 1, 2, 3, ..., n do
3 qj ← A(qj−1)

4 for i = 1, 2, ..., j+1 do
5 hi,j−1 ← qH

i qj

6 qj ← qj − hi,j−1qj

7 end
8 hj,j−1 ← ‖qj‖
9 qj ←

qj

hj,j−1

10 end

There are a few restrictions on this method. First, b must not be the zero vector and it must
not be an eigenvector of A. If so, performing the operation Ab will simply result in a scaled version
of b and thus an orthogonal basis cannot be formed [4]. Additionally, it may be desirable to ensure
that ||qn||2 is not within a certain tolerance of zero, breaking out of the loop if this occurs. If
||qn||2 = 0, we have found an invariant subspace, and we will not be able to produce a vector qn+1

that is orthogonal to the other n vectors [5].

Performing the Arnoldi iteration n times results in two matrices, Qn and Hn. Qn is an or-
thonormal n× n+ 1 matrix. Its columns are made up of the vectors q, so Qn is of the form

Qn =

 | | | . . . |
q0 q1 q2 . . . qn

| | | . . . |

 .
The values hi,j are elements of a n+ 1× n upper Hessenberg matrix of the form

Hn =



h1,1 h1,1 h1,1 . . . h1,n−1 h1,n

h2,1 h2,1 h2,1 . . . h2,n−1 h2,n

0 h3,1 h3,1 . . . h3,n−1 h3,n

0 0 h4,1 . . . h4,n−1 h4,n

0 0 0
. . . h5,n−1 h5,n

...
...

...
...

...
...

0 0 0 hn,n−2 hn,n−1 hn,n−2

0 0 0 0 hn+1,n−1 hn+1,n


.

The Hermitian of a matrix Q is its complex conjugate transpose and denoted by QH . Given
that a Hessenberg factorization of the matrix A is

A = QHHQ,

2

where H is an upper Hessenberg and Q is orthonormal, we see that another interpretation of the
Arnoldi iteration as the use of Gram-Schmidt orthogonalization in the Hessenberg factorization of
A [6].

One major benefit of the Arnoldi iteration is that the iteration may be stopped at any time
after n iterations and a basis for the subspace Kn will have been created and stored in Qn, so even
if we do not complete all iterations, we still receive useful information [6]. This method does have
its downsides, as we still must store the (possibly large) vectors q in memory, and each iteration
get more computationally expensive [5]. The Arnoldi iteration can be ”restarted" to diminish this
problem, using the output after a few iterations as a new input [8].

As a final note, if the matrix A is Hermitian (meaning that the complex conjugate of the lower
diagonal elements are reflected across the upper half), the Arnoldi iteration simplifies into the
Lanczos iteration [7]. This is simply an optimized version of the Arnoldi iteration for Hermitian
matrices. The resulting matrix Hn is also Hermitian and tridiagonal, so only two vectors need be
stored in memory; one for the diagonal and one for the subdiagonal. Additionally, to find the Hn,
only the two most recent vectors qn are needed since most values of Hn are zero. Thus, we see
that the Lanczos iteration saves time and memory. Please see chapter 17 from J. Hupmpherys for
a complete algorithm [4].

3 Finding Eigenvalues

We can express the matrix Hn as

Hn = QH
nAQn,

The product QH
nAQn is a unitary transformation, which preserves the inner products of vectors [7].

In fact, Hn is a low-rank approximation of A. As n, the number of Arnoldi iterations, increases, the
eigenvalues of Hn will converge to the largest eigenvalues of A. The eigenvalues of Hn are called
the Ritz values [4].

3.1 Convergence

The Ritz values converge to the eigenvalues of A at different rates. Typically, the largest eigenvalues
will converge before the smaller eigenvalues [9]. Figure 1, taken from J. Humphereys, shows that
the largest eigenvalue for a random 500×500 matrix converges faster than the other 15 largest
eigenvalues [4]. In addition, Ritz values for random matrices will take longer to converge than
those for non-random matrices [4]. To decrease the number of iterations to converge, the Arnoldi
method with restarting is often implemented instead, which reduces the number of iterative steps
to achieve convergence [8].

3.2 Example: The Fast Fourier Transform

The Fast Fourier Transform is a computationally efficient way to compute the Fourier amplitudes
of a signal, where Fourier amplitude associated with frequency k on a period L is defined by

f̂(k) =
1

L

∫ L

0

f(x) exp(−2πikx/L)dx.

Should we attempt to write this operator in matrix form to act on a complex vector u(x) with N
elements, we would find

3

Figure 1: The convergence of 15 eigenvalues for a random matrix. The blue line is the largest
eigenvalue, and it converges in 20 iterations [4].

û(x) =



1 1 1 ... 1
exp(−2πik1x1/L) exp(−2πik1x2/L) exp(−2πik1x3/L) ... exp(−2πik1xN/L)
exp(−2πik2x1/L) exp(−2πik2x2/L) exp(−2πik2x3/L) ... exp(−2πik2xN/L)
exp(−2πik3x1/L) exp(−2πik3x2/L) exp(−2πik3x3/L) ... exp(−2πik3xN/L)

...
...

...
. . .

...
exp(−2πikNx1/L) exp(−2πikNx2/L) exp(−2πikNx3/L) ... exp(−2πikNxN/L)


u,

which is an N × N matrix [10]. If N is 220, we would need 64 terabytes of memory to store
this matrix, so we cannot practically use the matrix form for the Fourier transform to find its
eigenvalues [4].

Fortunately, Arnoldi iteration allows us to find the eigenvalues of a linear operator L (such
as the FFT) without ever finding its explicit matrix representation. For a vector u N elements
long, we can use Arnoldi iteration to find the four largest eigenvalues of FFT(u), which are known
to be

√
N,−

√
N, i
√
N , and −i

√
N [5]. Using the implementation of the Arnoldi iteration with

a complex random guess vector b, we were able to confirm this result for dimension 220. After
only 4 iterations, we find the largest eigenvalues of the FFT acting on 220 dimensions are indeed
1024, -1024, 1024i, and −1024i, as expected. However, changing the guess vector changes the
convergence of the Ritz values to the expected eigenvalues of A. For example, if the guess vector
is a purely real vector of ones, we do not see the desired result.

4 GMRES

The Arnoldi iteration can be altered to solve a system of equations

Ax = b.

The algorithm that solves this system is called the Generalized Minimal Residual Method, or
GMRES [11]. Given a guess vector b, GMRES uses a least squares approximation to obtain a
vector xn in the subspace Kn that minimizes ||Axn − b||2, which is called the residual rn [4]. The
value of xn formed after n Arnoldi iterations is given by

xn = Qnyn + x0,

where x0 is an initializing guess vector and yn is found by using least squares to minimizing the
residual

4

Figure 2: The solutions to the heat equation. The red curve is the initial temperature profile, and
the blue curves, which decrease exponentially as time increases, represents the temperature profile of
the rod at time n.

||Hnyn − (||b−Ax0||2)e1||2,

where e1 is a unit column vector n+1 units long. Here, Qn and Hn are the same matrices returned
by the plain Arnoldi iteration. Please see chapter 18 in J. Humpherys for a complete algorithm [4].

4.1 Convergence

The GMRES method converges linearly with the number of iterations, and each iteration takes
more time and memory to compute. Therefore, this method can take prohibitively long to converge.
As with the Arnoldi iteration, implementing GMRES with restarting can decrease the number of
iterations necessary for convergence [9].

4.2 Example 1: The Forward-Time, Centered-Space Heat Equation

Given a one dimensional rod of length 2π, we can use GMRES numerically solve the heat equation


ut = uxx

u(0, t) = 0

u(2π), t) = 0

u(x, 0) = f(x)

with u(x, t) representing the temperature of the rod at location x at time t and the initial temper-
ature profile given by f(x) = sin(x).

We begin by discretizing f(x) and u into N evenly spaced points with ∆x = (2π/N). Using
forward-time finite and centered-space finite differences, we can write a matrix equation represent-
ing one step forward in time ∆t,

5

un =


1 0 0 0 . . . 0

− ∆t
(∆x)2 1 + 2∆t

(∆x)2 − ∆t
(∆x)2 0 . . . 0

0 − ∆t
(∆x)2 1 + 2∆t

(∆x)2 − ∆t
(∆x)2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1

un−1,

where u0 will be f(x). We use GMRES to solve this system of equations for the vectors un, which
represent the temperature profile of the rod at time n. For the conditions listed above and ∆t = 0.1,
these solution vectors are plotted for n=0,1,2...30 in figure 2. As expected, the temperature decays
to zero as time increases. For this particular problem, GMRES requires only 1 iteration for each
time n with a tolerance of 10−12, indicating fast convergence.

5 Summary

The Arnoldi iterative method utilizes Krylov subspaces to find an approximate Hessenberg reduc-
tion of a square matrix A. It can also be modified to the Lanczos iteration for Hermitian matrices;
which is more computationally efficient and requires less storage. The Arnoldi iteration is especially
useful for finding the eigenvalues of a linear operator acting on a large vector without creating the
matrix form of that operator. In addition, GMRES is an algorithm that solves systems of equations
using the Arnoldi iteration. The Arnoldi iteration has its downfalls, mainly that each iteration
takes more time and storage than the last, but this issue can be reduced via restarting. Generally,
this algorithm and its adaptations are very effective at studying large matrices.

References

[1] Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important
anyway? http://www.math.tamu.edu/~mpilant/math311/eigenvalues.pdf.

[2] Some Applications of the Eigenvalues and Eigenvectors of a Square Matrix:
https://www.cpp.edu/~manasab/eigenvalue.pdf.

[3] E. Jarlebring, Introduction to Arnoldi Method:
https://www.math.kth.se/na/SF2524/matber14/arnoldi_intro_pub.pdf, (2007).

[4] J. Humpherys and T. J. Jarvis, Labs for Foundations of Applied Mathematics: Volume 1
Mathematical Analysis.

[5] Arnoldi and Lanczos Algorithms:
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter10.pdf.

[6] Arnoldi Iteration and GMRES: http://www.math.iit.edu/~fass/477577_Chapter_14.pdf.

[7] Finding Eigenvalues: W. Wheeler, Arnoldi Iteration and the QR Algorithm:
http://algorithm-interest-group.me/assets/slides/Eigenvalue_algorithms.pdf,
(2016).

[8] Restarting Arnoldi and Lanczos Algorithms:
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter11.pdf.

[9] M. Bellalik, Y. Saad, and H. Sadok, On the Convergence of the Arnoldi Process for
Eigenvalue Problems: https://www-users.cs.umn.edu/~saad/PDF/umsi-2007-12.pdf.

[10] B. W. Dickinson and K. Steiglitz, Eigenvectors and Functions of the Discrete Fourier
Transform: http://www.cs.princeton.edu/~ken/Eigenvectors82.pdf, (1982).

[11] Generalized Minimal Residual Method:
http://mathworld.wolfram.com/GeneralizedMinimalResidualMethod.html.

6

http://www.math.tamu.edu/~mpilant/math311/eigenvalues.pdf
https://www.cpp.edu/~manasab/eigenvalue.pdf
https://www.math.kth.se/na/SF2524/matber14/arnoldi_intro_pub.pdf
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter10.pdf
http://www.math.iit.edu/~fass/477577_Chapter_14.pdf
http://algorithm-interest-group.me/assets/slides/Eigenvalue_algorithms.pdf
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter11.pdf
https://www-users.cs.umn.edu/~saad/PDF/umsi-2007-12.pdf
http://www.cs.princeton.edu/~ken/Eigenvectors82.pdf
http://mathworld.wolfram.com/GeneralizedMinimalResidualMethod.html

	Introduction and Motivation
	The Arnoldi Iteration Algorithm
	Finding Eigenvalues
	Convergence
	Example: The Fast Fourier Transform

	GMRES
	Convergence
	Example 1: The Forward-Time, Centered-Space Heat Equation

	Summary

